The neuroleptic drug pimozide inhibits stem-like cell maintenance and tumorigenicity in hepatocellular carcinoma
نویسندگان
چکیده
Drug repurposing is currently an important approach for accelerating drug discovery and development for clinical use. Hepatocellular carcinoma (HCC) presents drug resistance to chemotherapy, and the prognosis is poor due to the existence of liver cancer stem-like cells. In this study, we investigated the effect of the neuroleptic agent pimozide to inhibit stem-like cell maintenance and tumorigenicity in HCC. Our results showed that pimozide functioned as an anti-cancer drug in HCC cells or stem-like cells. Pimozide inhibited cell proliferation and sphere formation capacities in HCC cells by inducing G0/G1 phase cell cycle arrest, as well as inhibited HCC cell migration. Surprisingly, pimozide inhibited the maintenance and tumorigenicity of HCC stem-like cells, particularly the side population (SP) or CD133-positive cells, as evaluated by colony formation, sphere formation and transwell migration assays. Furthermore, pimozide was found to suppress STAT3 activity in HCC cells by attenuating STAT3-dependent luciferase activity and down-regulating the transcription levels of downstream genes of STAT3 signaling. Moreover, pimozide reversed the stem-like cell tumorigenic phenotypes induced by IL-6 treatment in HCC cells. Further, the antitumor effect of pimozide was also proved in the nude mice HCC xenograft model. In short, the anti-psychotic agent pimozide may act as a novel potential anti-tumor agent in treating advanced HCC.
منابع مشابه
The neuroleptic agents pimozide inhibited cell proliferation and induced apoptosis in human breast cancer cell line MCF-7 (12,15). In addition, pimozide suppressed the self-renewal capacity of chronic myelogenous leukemia cells
Currently, drug discovery and development for clinical treatment of prostate cancer has received increased attention, specifically the STAT3 inhibitor. Our previous study reported that the neuroleptic drug pimozide had antitumor activity against hepatocellular carcinoma cells or stem-like cells through suppressing the STAT3 activity. In the present study we demonstrate that pimozide inhibits ce...
متن کاملInhibition of wnt/β-catenin Signaling in Hepatocellular Carcinoma by an Antipsychotic Drug Pimozide
Hepatocellular carcinoma (HCC) is one of the most common forms of malignant cancers in the world, yet very few effective systemic treatments for HCC patients exist. Thus, the development of new treatment modalities presents a great need. The wnt/β-catenin signaling pathway is highly activated in stem cell-like aggressive HCC, which is associated with chemoresistance and poor survival in HCC pat...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملZinc finger protein X‐linked promotes expansion of EpCAM+ cancer stem‐like cells in hepatocellular carcinoma
Zinc finger protein X-linked (ZFX) is frequently upregulated in multiple human malignancies and also plays a critical role in the maintenance of self-renewal in embryonic stem cells. However, the role of ZFX in liver cancer stem cells (CSCs) remains obscure. We observed that the elevated expression of both ZFX and epithelial cell adhesion molecule (EpCAM) was associated with aggressive clinicop...
متن کاملAngiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway
Objective(s): Hepatocellular carcinoma (HCC) is one of the leading fatal neoplasms and the most common primary liver malignancy worldwide. Peptide hormone ANGPTL8 (betatrophin) may act as an important regulator in HCC development through the Wnt/β-catenin pathway. We aimed to evaluate the effects of recombinant ANGPTL8 on Wnt/β-catenin signaling in human liver carcinom...
متن کامل